首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112906篇
  免费   9336篇
  国内免费   6793篇
电工技术   12884篇
技术理论   2篇
综合类   7555篇
化学工业   22177篇
金属工艺   8526篇
机械仪表   8165篇
建筑科学   3151篇
矿业工程   1814篇
能源动力   5699篇
轻工业   6499篇
水利工程   663篇
石油天然气   4624篇
武器工业   993篇
无线电   12832篇
一般工业技术   12430篇
冶金工业   3061篇
原子能技术   1246篇
自动化技术   16714篇
  2024年   176篇
  2023年   1545篇
  2022年   2199篇
  2021年   3186篇
  2020年   3116篇
  2019年   2949篇
  2018年   2701篇
  2017年   3567篇
  2016年   3845篇
  2015年   3869篇
  2014年   5542篇
  2013年   6181篇
  2012年   6689篇
  2011年   8174篇
  2010年   6615篇
  2009年   7459篇
  2008年   7167篇
  2007年   7929篇
  2006年   7530篇
  2005年   6187篇
  2004年   5400篇
  2003年   5169篇
  2002年   4128篇
  2001年   3264篇
  2000年   2786篇
  1999年   2152篇
  1998年   1496篇
  1997年   1270篇
  1996年   1198篇
  1995年   1174篇
  1994年   1006篇
  1993年   837篇
  1992年   654篇
  1991年   407篇
  1990年   265篇
  1989年   260篇
  1988年   178篇
  1987年   115篇
  1986年   114篇
  1985年   86篇
  1984年   73篇
  1983年   47篇
  1982年   53篇
  1981年   57篇
  1980年   30篇
  1979年   23篇
  1978年   25篇
  1977年   21篇
  1976年   26篇
  1975年   18篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
51.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
52.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
53.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
54.
液相色谱-串联质谱(LC-MS/MS)技术具有高灵敏度、高特异性、高分辨率和高效率的优点。近年来随着仪器灵敏度的提高,LC-MS/MS在常规临床检验中显示出极大的潜力,并在疾病早期预防和诊断中发挥着不可替代的作用。本文对LC-MS/MS在新生儿疾病筛查、维生素D检测、内分泌激素检测、肽类和蛋白质定量分析等临床检验方面的研究进展进行综述,并讨论了未来面临的挑战。  相似文献   
55.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
56.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
57.
《Ceramics International》2022,48(2):2298-2305
As a promising anode candidate, hierarchical porous transition metal oxide nanosheets (TMO-NSs) have attracted significant interest due to their various advantages of abundant active sites, high specific capacity and shortened ion/electrons transport pathways. Although the TMO-NSs have been developed in the past decades, the previous synthesis strategies have some drawbacks such as high cost, complex synthesis techniques, and the requirement of special instruments. Herein, we develop a generalized and facile biomorphic method to synthesize various controllable hierarchical porous TMO-NSs by using waste bagasse as biotemplate. Furthermore, the porosity and pore size of as-prepared hierarchical porous TMO-NSs can be adjusted by changing the precursor solution concentration. Novel hierarchical porous TMO-NSs have been successfully prepared for many ternary or binary TMO, such as NiFe2O4, ZnFe2O4, ZnMn2O4, NiO and ZnO. Owing to their unique nanostructure, as-synthesized hierarchical porous TMO-NSs show an excellent electrochemical performance when used as anode for Li/Na-ion batteries. We believe that various hierarchical porous TMO-NSs available from the green, economical and convenient biomorphic strategy may lead to further developments in research and application on TMO-NSs materials.  相似文献   
58.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
59.
The high capacity anode material is required to replace the most commonly used anode - graphite to keep up the global demand to achieve the goal. Multi-metal oxide has gained keen attention for its higher theoretical capacity and relatively stable than a single metal oxide. α-SnWO4 has a theoretical capacity of 850 mAh g?1 which is greater than graphite (372 mAh g?1). α-SnWO4 has been synthesized through low-temperature hydrothermal method using tin chloride and sodium tungstate as a precursor in acidic medium (succinic acid) at 200 °C for 12 h. The obtained product has been characterized using various analytical tools such as XRD, FT-IR, UV-DRS, BET, PL, SEM, and HR-TEM. XRD analysis shows the orthorhombic phase with a crystallite size of ~25 nm α-SnWO4has been examined as an electrode material for Li-ion battery (LIB) and displays an initial discharge capacity of 985 mAh g?1. Columbic efficiency close to 100% has been observed for 100 cycles. The stability of the electrode material was studied at different C-rates. Band-gap calculated using UV-DRS (Eg = 1.9 eV) shows that α-SnWO4 is a good candidate for photocatalytic degradation. Results of the photocatalytic experiment using methylene blue (MB) as a model pollutant in an aqueous medium shows good results. The above applications show that α-SnWO4 is multifunctional materials for diverse applications.  相似文献   
60.
《Ceramics International》2021,47(22):31457-31469
The present work investigated the effects of thermal cycles in air on the tensile properties of a two-dimensional carbon fibre reinforced silicon carbide composite (2D C/SiC) prepared by chemical vapour infiltration at different heating rates. The composite was exposed to different cycles of thermal shock between 20 °C and 1300 °C in air. The damage mechanisms were investigated by AE online monitoring and fractured morphology offline analysis. The tensile strength of 2D-C/SiC decreases with increasing thermal cycles. However, the modulus only decrease within 40 cycles. Due to oxidation, with the decrease in heating rate, the residual properties of the material decrease more obviously. Meanwhile, the results of AE online monitoring and fracture analysis show that the matrix damage is more serious at higher heating rate and that more delamination occours in tensile fractures. The above results indicate that for the thermal shock of 2D C/SiC composites in air, oxidative damage plays a key role in the residual properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号